πŸ“” Online Prediction and Learning

Graduate Course, IISc, 2022

πŸ“Œ Logistics: Lecture notes consists of materials from my coursework at IISc.

  • Lec-1: Introduction to Online Learning.
  • Lec-2: Predictions with Experts
  • Lec-3: Halving Algorithm
  • Lec-4: Weighted Majority (WMAJ) & Random-WMAJ Algorithms
  • Lec-5: Convex Analysis and Online Convex Learning
  • Lec-6: Follow The Leader (FTL)
  • Lec-7: Introduction to Follow the Regularized Leader (FTRL)
  • Lec-8: Analysis of FTRL
  • Lec-9: FTRL futher examples and analysis
  • Lec-10: Geometrix view of FTRL
  • Lec-11: Convex Geometry & Dual Functions
  • Lec-12: Frenchel Duality
  • Lec-13: Online Mirror Descent
  • Lec-14: Optimization Theory view
  • Lec-15: Online Convex Optimization with Bandits
  • Lec-16: Online Linear Optimization with Bandits Feedback
  • Lec-17: Stochastic Bandit Algorithms
  • Lec-18: Exploration vs. Exploitation
  • Lec-19: Hoeffding’s Inequality and Intro to UCB
  • Lec-20: UCB: Regret bound analysis
  • Lec-21: Introduction to Thompson Sampling
  • Lec-22 & Lec-23: Regret Analysis: Thompson Sampling
  • Lec-24: General Stochastic Multiarm Bandits
  • Lec-25 & Lec-26 & Lec-27: Fundamental limits of Bandit learning
  • Lec-28: Structured Bandits