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Machine Unlearning

@ What is Machine Unlearning?

e machine unlearning refers to the task of forgetting the learned
information or erasing the influence of a specific data subset of the
training dataset from a learned model in response to a user request.

@ What are the Mathematical Definitions?

e Z as an example space, i.e., a space of datasets.

o Given a dataset D, we want to obtain a machine-learning model from a
hypothesis space H. The process of training a model on D by a
learning algorithm, denoted by a function A: Z — H, with the trained
model denoted as A(D).

e To support forgetting requests, an unlearning mechanism, denoted by a
function U, that takes as input a training dataset D € Z, a forget set
Df C D (data to forget), and a model A(D). It returns a sanitized (or
unlearned) model U(D, Df, A(D)) € H.

e The unlearned model is expected to be the same or similar to a
retrained model A(D \ Dr)
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Research Objective and Problem Formulation

@ Objectives

@ Formulate a methodology aimed for forgetting information linked to a
specific class of data from a pre-trained classification network.
@ Decrease model's performance on the unlearned data class while

minimizing any detrimental impacts on the model’s performance in
other classes.
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Research Objective and Problem Formulation

@ Objectives

@ Formulate a methodology aimed for forgetting information linked to a
specific class of data from a pre-trained classification network.
@ Decrease model's performance on the unlearned data class while

minimizing any detrimental impacts on the model’s performance in
other classes.

@ Formulation

@ parameter space © C R™. Pre-trained classification model denoted as
fg~ with initial parameters 8* € ©. Trained using a dataset
D= {(x,-,y,-)}l.g‘l, where (x;, y;) ﬂ Pxy(x,y). the label space
y={0,1,2,...,C -1}

@ a particular class or classes of data points s, € ) that the model needs
to unlearn. So unlearning samples of that specific class denoted as
Sn = {(xi,¥i) : yi = sn}. The objective of unlearning is to determine a
parameter §* for the unlearned model fpu that closely aligns with the
performance of the retrained model fy, trained on samples S, = D\ S,.
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Proposed Methodology

@ Given 0* and S, the unlearning objective find 8P = arg maxg P(6|Sp)

0P = arg m;xlog P(0|Sp) (1)

= arg meaxlog P(Sp|6) + log P(6) — log P(S,) (2)

= arg méaxlog P(Sp|0) + log P(6) — K1 (3)

log P(0|D) = log P(6|Sp, Sh) (4)
= log P(Sp, Sn|0) + log P(6) — K> (5)

= log P(S,|0) + log P(Sh|0) + log P(8) — K> (6)

@ Now using the substituting the value of log P(S,|0) + log P(6)
0P = arg max log P(8|D) — log P(Sh|6) + K2 — K1 (7)
= arg meaxﬁ(ﬁ,D, Sn) (8)
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Proposed Methodology

L(0,0",Sn) ~ alog P(Sal0) + B0 — ") Tlg-(Sa) (0 — 67) + 7110 — 0|2
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Experiments and Results

Table: accuracy on the forgotten class: Ap,(%) and accuracy on the remaining classes:
Ap, (%)

Initial Training Re-training Fine-tuning, Fast-Effective [?] Bad Teaching [?] Our Method(PBU)
Dataset Models Classes Ap, Ap, Ap, Ao, Ap, Ap, Ap, Ap, Ap, Ap,
Class-2 | 99.65£0.11 99.42£0.11 0+£0 99374006 0+0 04174088 040 97.96+029 | 0.03:0.06 98.73:+0.57
Resnet-34  Class-6 99.51+0.06 0+£0 99.44+0.16 0+0  89.13+2.86  0+0 87.62£0.49 0+0 91.09+2.9
Class-8 99.41+0.12 0+£0 99.37+019 0+0 9464197  0+0 96.18+0.53 0+0 98.24£0.36
-
@ Class-2 | 99.6+0.12  99.44:+0.11 | 040 99.15+0.05 040 99.3740.12 040 91.43+1.62 040 94.1540.54 00 96.5+0.3
g Densenet-121  Class-6 | 99.72£0.12  99.53+0.1 | 040 99.20+0.05 0+0 99.69+0.16 0+0  96.1+0.65 0£0 97.97+0.23 | 0.84+0.35 98.65:0.11
Class-8 | 98.95£0.63 99.58+0.11 | 040 99.47£0.09 0+0 99.53+008 0+0 9454234 0+0 94.83+059 | 0.27+0.24 98.57+0.31
Class-2 | 99.69+021  99.55:0.1 040 99.1940.12 0.18+0 07.52+024 040 97.18+1.14 0+0 98.65::0.29
ConvNeXt-L  Class-6 99.59+0.1 0+£0 98.63+0.01 0+0 98.25+0.13  0£0 97.75£051 | 1£0.16  98.33+0.18
Class-8 99.6+0.14 0+£0 98.8540.04 00 97.54:£099  0£0 96.51+15 | 1224156 97.26+1.59
Class-1 75.87+0.31 0+£0 69.98+124 040 5461+021 0874023 68.0640.14 | 0+1.15  70.51+0.18
Resnet-50  Class-3 76.17+0.41 040 69.2540.36 0+0  59.43+056 040 70.35+1.19 | 0.5+0.58 71.85+0.91
s Class-8 75.81+0.34 0+£0 68.28+0.66 040 57+0.1 0+0  65.98+0.78 | 05+1  6551+2.05
hoi Class-1 | 56.33+4.03 74.65+142 | 040 74.18+2.47 0+0 74554066 040 50754277 040 51834125 | 0.54£0.58 63.96::1.37
g Densenet-121  Class-3 | 89.8+1.31 74.74+183 | 040 73.9+2.32 0+0 74.54+188 040 56.8443.41 1314115 54.52+3.03 | 0.15:0.17 66.38+3.65
S Class-8 | 74.78+23.81 7551285 | 040 72.29+239 0+0 7514127 040 52.88+1.44 0184031 56.61+2.06 | 0.4+0.46  64.6+3.51
Class-1 | 91.59+4.13  89.03+103 | 040 73.03£055 040 73794017 040 75254101 040 72264107 | 194085 76.82:+1.19
ConvNeXt-L  Class-3 86 88.50+1.00 | 040 73.15+0.3 0+0 74.95+016 0+0 7051+0.65 040 7140.39 1£115 72514112
Class-8 89.22+1.03 73654119 040 71224093 040 71.97+026 | 0£0.18  72.64:+0.23
Class-10 78.18+0.01 7734077 040  60.83+1.4 0£0 56.07+1.08 | 0.8+£0.69 68.34:+1.24
Resnet-50  Class-30 77.94:+0.01 77.08+£025 040 62134095 040 52454057 | 0.27+0.46 65.46::0.32
= Class-50 | 50.6£4.85  78.26=0 | 0+0 74.18+02 0+£0 77.23+0.32 040 63.06£0.77  0+0 55.53+0.48 0+0 69.430.81
3 Class-10 | 60.87+6.31 75.85+1.93 | 040 75384061 0+£0 75.65+1.12 040  53.5+1.89 00 50914037 | 124131  64.97+2
5] Densenet-121  Class-30 | 88.13+£046 7617074 | 040 74914153 040 75374159 040  57.8411 087+1.15 54.86+184 | 0.67+0.86 64.75+2
4 Class-50 77.67£1.88 | 040 75.2: 0+£0 7574105 040  5556+4.65 0.29+027 58.23+0.77 0+0 67.9+2
Class-20 | 90.38+0.76 87.43+0.59 | 040 87.73+0.62 0+0 88514053 040 69.26£092 040 68.77:£0.41 0+0 75.97:40.79
ConvNeXt-L  Class-40 | 96.35+0.74 87.17£0.37 | 040 87.02£0.17 0+0 88.46+0.2 040 7237+176 040 70.62+0.28 0+0 78.45:0.79
Class-60 | 93.41+0.72 86.45+0.55 | 0+0 86.83+0.34 0+0 B87.44+0.28 040  73.05+16 0£0 73.83+£039 | 0.74+0.5 81.79:+0.99
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Experiments and Resutls
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Conclusion and Future works

@ A novel method tailored for unlearning specific classes within deep
classification models. A key distinguishing feature of our approach is
its capability to function effectively even with partial access only to
the unlearning class data

@ As part of future work a slight extension of this method is now being
investigated for applying unlearning in diffusion models.
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