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Abstract—We consider the regret minimization problem in a
stochastic multi-armed bandit setup, where the classical goal is to
design policies that minimize the so-called expected cumulative
regret. While expected-regret guarantees are well understood,
controlling the tail behavior of the regret is crucial for their
use in safety-critical applications. Recent works highlight that
certain optimal algorithms can be fragile in the sense that
they may incur large regret with non-negligible probability.
However, current analysis has so far been confined mainly to
simpler settings within the single parametric exponential family
of reward distributions. Thus, the principal aim of our work is
to analyze such regret-tail behavior of optimal bandit algorithms
in a relatively broader setting: policies that are optimized for
generic families of reward distributions under significantly weaker
structural assumptions. For such general classes of reward
distributions, we first show that a generalization of KLinf -UCB
algorithm remains asymptotically optimal. We then analyze its
regret tail behavior and show that, for the distribution class
under consideration, optimal algorithms generally exhibit a weak
fragility in general. However, when the additional condition of
discrimination equivalence holds, this fragility intensifies to a
strong form characterized by heavy (Cauchy-type) regret tails.
Since several widely studied model classes, including moment-
bounded and bounded-support distributions, are contained in our
framework, these results imply that optimal bandit algorithms
for such families are strongly fragile whenever discrimination
equivalence is satisfied. Finally, in the absence of discrimination
equivalence, we refine the regret-tail upper-bound analysis and
establish that, for bounded and finitely supported distributions,
the optimal algorithm exhibits only a strictly weaker, near-robust
form of fragility.

I. INTRODUCTION

The multi-armed bandit (MAB) problem is a classical
framework for sequential decision-making under uncertainty,
in which an agent (player) interacts with a set of K arms,
each associated with an unknown reward distribution. At each
round, the agent selects an arm and observes a stochastic
reward, with the goal of maximizing the total expected reward
till time T > 0. This objective is typically formalized via
the notion of regret, defined as the difference between the
cumulative reward of an agent’s policy over a horizon T and
that of a policy that always plays an arm with the largest
mean reward. Minimizing expected regret is equivalent to
maximizing expected cumulative reward, and serves as the
standard performance criterion in bandit problems.

A dominant focus of the contemporary literature has been
on designing algorithms that minimize the expected regret.
[1], [2] proposed a fundamental lower bound on the expected
cumulative regret suffered by any reasonable algorithm for
this setup. Algorithms achieving this lower bound (even in the
multiplicative constants) have also been developed for a wide
class of reward distributions [3]–[12]. We refer the reader to
[13], [14] for a comprehensive treatment of this classical setup.

While expected regret is a canonical performance metric
in stochastic bandits, it provides only a coarse summary of
algorithmic behavior. A more informative characterization is
obtained by studying the distribution of the regret [15]–[18], and
in particular its tail behavior. Understanding the upper tail of
the regret distribution is crucial for quantifying the probability
of rare but severe failure events in which an algorithm may
incur considerable regret. Such high-regret outcomes can be
especially consequential in applications such as clinical trials,
where such events may correspond to exposing a large number
of patients to suboptimal treatments. Consequently, controlling
heavy regret tails, rather than merely minimizing expected
regret, is a key objective in risk-sensitive and safety-critical
settings. A theoretical understanding of regret tail probabilities
can thus provide a principled avenue for identifying and
mitigating the vulnerabilities of existing optimal algorithms,
and for guiding the design of more robust bandit strategies
(see also, [19]).

In recent work, [20] establish a lower bound on the tail
probabilities of the regret for any asymptotically optimal bandit
algorithm, that is, one which matches the leading-order term
in the regret lower bound, including the exact multiplicative
constant. They further provide a detailed analysis of the KL-
UCB algorithm of [9], showing that its regret tail matches
their lower bound, thereby demonstrating the tightness of
these bounds for parametric settings such as single-parameter
exponential family (SPEF) models. While the authors discuss
the extensions of their lower bounds to certain non-parametric
classes of reward distributions, the regret tail behavior of
optimized algorithms in these more general settings remains
open.

In particular, their analysis does not extend to the popular
empirical KL-UCB, which is known to be optimal for both
finitely-supported distributions (Theorem 2 in [9]) and bounded



supported distributions (Proposition 4 in [12]), nor to the more
general KLinf -UCB algorithm proposed in [12]. This motivates
the central question of the present work:

Can we characterize the regret tail behavior for
asymptotically optimal bandit algorithms for a broader,

nonparametric class of reward distributions?

In this work, we address the above question in affirmative.
We first show that the generalization of KL-UCB algorithm,
studied in [12] for a specific heavy-tailed family (KLinf -
UCB), is actually asymptotically optimal for a very broad
class of distributions L, introduced later. We then prove a
regret-tail upper bound for the KLinf -UCB algorithm for this
general family of arm distributions. We conclude this section
by presenting the key contributions of this work.

• We extend the KLinf -UCB algorithm of [12] to a much
broader family of reward distributions L (to be intro-
duced later), and show that it is asymptotically optimal
(Theorem III.1). This is a substantial generalization, and
includes the moment-bounded class studied by the authors,
as well as the bounded support distributions as special
cases.

• We further prove a regret tail upper bound for this
generalized KLinf -UCB algorithm (Theorem IV.5). As
immediate corollaries, we the upper bounds for the optimal
UCB algorithms in classical settings: (a) KLinf -UCB for
moment-bounded class (Corollary V.2); (b) empirical KL-
UCB for bounded-support reward distributions (Corol-
lary V.3). When the class L satisfies an additional property
called discrimination-equivalence (Definition IV.3), we can
show that the upper bounds that we prove exactly match
the regret tail lower bound proposed in [20] (Remark IV.6).

• For the special case of finitely-supported distributions,
which do not satisfy the discrimination-equivalence prop-
erty, we provide a much tighter regret tail upper bound
for the empirical KL-UCB algorithm (Theorem VI.1), and
show that it matches the lower bound of [20].

Organization: The rest of the paper is organized as follows.
Section II presents the setup and necessary background. In
Section III, we present the Generalized KLinf -UCB algorithm
and analyze its asymptotic optimality. Section IV analyzes the
regret tail behavior of this KLinf -UCB under the discrimination-
equivalence condition. Finally, Section VI provides a refined
regret tail analysis for empirical KL-UCB in the finitely
supported setting to obtain tight upper bounds without relying
on discrimination equivalence. We review the relevant literature
in section Appendix B.

II. SETUP AND PRELIMINARIES

We consider a bandit problem with K-arms indexed by
a ∈ [K] := {1, . . . ,K}, with K ≥ 2. Let P(ℜ) denote the
collection of all probability measures on ℜ. For ν ∈ P(ℜ),
let m(ν) =

∫
ℜ xdν denote the mean of distribution ν. Let

M ⊆ P(ℜ) be any collection of probability measures. We
call a bandit model MK , which denotes the collection of
vectors of K distributions, each from M. Now, given a bandit

environment ν ∈ MK such that ν = {ν1, ν2, . . . , νK}, each
arm a ∈ [K] has a reward distribution νa with expected reward
µa = m(νa). Let µ∗ = max{µa : a ∈ [K]} be the highest
expected reward associated with the optimal arm. We denote
the sub-optimality gap of an arm a as ∆a = µ∗−µa. Without
the loss of generality, we assume that arm-1 is the optimal
arm such that µ1 > µ2 > . . . > µK for the rest of the paper.
Now, at time t, the agent (player) selects an arm At ∈ [K]
based on the past information to receive a reward Yt. Now, the
number of times each arm a is pulled till time t is referred to as
Na(t) ≜

∑t
s=1 I{As = a}. In addition, for each arm a and all

rounds t such that Na(t) ≥ 1, the empirical reward distribution
of arm-a is defined as ν̂a(t) = 1

Na(t)

∑t
s=1 δYs

I{As = a}.
Here δYs

denotes the Dirac measure at Ys. The quality of an
algorithm (policy) π is evaluated using the standard notion of
expected regret, which we now define formally. The expected
regret (or simply pseudo-regret) at round T ≥ 1 is defined as
follows.

E[R(T )] ≜ E

[
Tµ1 −

T∑
t=1

Yt

]
=

K∑
a=1

∆a E[Na(T )].

Note that the above expectation is with respect to the
probability measure Pπ

ν which is induced by the interaction
between the algorithm π and the bandit environment ν. Now we
define what it means for an algorithm to be called optimal for
a bandit model using the Lai-Robbins lower bound. Following
the seminal work of [1], the minimal achievable growth rate
of the expected regret for algorithms designed for the model
MK is precisely characterized. Further [2] generalized this
notion of Lai-Robbins lower bound, which is used by [20] for
defining an optimal algorithm as follows.

Definition II.1 (Optimal Algorithm). An algorithm is MK-
optimal algorithm if for any environment ν ∈ MK and for
each sub-optimal arm a, the following holds

lim
T→∞

E[Na(T )]

log T
=

1

KLM
inf(νa, µ1)

.

The proof of the Lai-Robbins lower bound [1], [2] relies on
change of measure arguments (see [13]). [21, Lemma 1] show
that it is necessary to impose certain restrictions on the class
M under consideration, otherwise KLinf(·, ·) = 0 leading to
unbounded expected regret. To this end, we restrict M to the
class L having the KLinf -concentration properties as defined
in Assumption II.2 and Assumption II.3 below. Finally, in
the subsequent section, we present a generalized version of
KLinf -UCB algorithm [12], which is asymptotically optimal
(Theorem III.1) for the distribution class L.

A. Distribution Class L
Recall from [22] that without any restrictions on the class

of reward distributions, the lower bound on the expected
regret becomes unbounded (logarithmic regret is impossible).
We therefore restrict our attention to the so-called KLinf -
concentrated class of distributions, which we denote by L.



To specify L, we need certain definitions, which we now
introduce.

For a probability distribution ν and x ∈ ℜ, KLL
inf(ν, x),

defined below, has two concentration properties given by
Assumption II.2 and Assumption II.3. We define the KLL

inf(ν, x)
for a distribution ν and x ∈ R as follows:

KLL
inf(ν, x) = inf{KL(ν, ν′) : ν′ ∈ L and E[ν′] ≥ x}

Here KL(ν, ν′) =
∫
log dν

dν′ dν denotes the Kullback-
Leibler divergence between two distributions ν and ν′. For
notational simplicity, we drop the superscript L to denote
KLinf(ν, x). Now, we discuss the two concentration properties
of KLinf(ν, x) that characterize the distribution class L as
follows.

Assumption II.2. Let ν̂n be the empirical distribution of ν
having mean m(ν) and g(n) be an increasing function such
that g(n) = O(log(1 + n)), then the following holds:

P (∃n ∈ N : n ·KLinf(ν̂n,m(ν))− g(n) ≥ x) ≤ e−x (1)

Assumption II.3. Let ν̂n be the empirical distribution of ν
having mean m(ν) and δ > 0,then there exists constants d0 > 0
and cν > 0 s.t. for all d < d0 the following holds.

P
(
KLinf(ν̂n,m(ν) + δ) ≤ KLinf(ν,m(ν) + δ)− d

)
(2)

≤ e−ncνd
2

These two assumed concentration in equations 1 and 2
for KLinf(ν, x) provide structural restrictions for the class of
distributions L. This class of distribution is fairly broad because
various useful families of distributions, such as bounded
support [3] and moment-bounded distributions [12], follow
these assumptions. We discuss these examples in detail in
Appendix A.1.

III. GENERALIZED KLinf -UCB ALGORITHM AND ITS
OPTIMALITY

In this section, we present a straight-forward generalization
of the KLinf -UCB algorithm for arm distributions from L, and
prove that it is asymptotically optimal. Let ν ∈ LK denote a
K-armed bandit instance.

For exploration functions fa(·) for each a ∈ [K], define the
index of arm a as

Ua(Na(t), t) = sup

{
x ∈ ℜ : KLinf(ν̂a(t), x) ≤

fa(t)

Na(t)

}
.

The algorithm initializes by pulling each arm once. At each
subsequent time instance t, it computes the index Ua(Na(t), t)
for every arm, and pulls the arm with the maximum value of
the computed index (ties broken arbitrarily).

We remark that the prior work [12] introduced a batched
variant of the algorithm to reduce the computational overhead
of the naive approach. However, this batched procedure is not
asymptotically optimal (its regret matches the lower bound
only up to a multiplicative constant multiplicative). Hence, we

Algorithm 1 Generalized KLinf -UCB(K, {fa(·)}Ka=1)

Input: K; L; exploration functions for each arm, i.e., fa(·).
Initialization: Pull each arm a ∈ [K] once
Set t←− K + 1
Compute ν̂a(t), and update Na(t) for all arms a ∈
[K].

1: for t = K + 1 to T do
2: for each arm a ∈ {1, . . . ,K} do
3: Compute index Ua(Na(t), t) =

sup
{
E (ν) : ν ∈ L,KL(ν̂a(t), ν) ≤ fa(t)

Na(t)

}
4: end for
5: Pick an arm At+1 ∈ argmax

a∈[K]

Ua(Na(t), t)

6: Set t← t+ 1
7: Update ν̂a(t), and update Na(t) for all arms a ∈ [K].
8: end for

restrict our attention to the single-batch version, and show that
it is asymptotically optimal for L.

Theorem III.1. For ν ∈ LK , and fa(t) = log(t) +
2 log log(t) + 2 log(1 +Na(t)) + 1, Generalized KLinf -UCB,
with inputs (K, fa(.)) is asymptotically optimal, i.e.,

lim sup
T→∞

E[Na(T )]

log(T )
≤ 1

KLinf(νa, µ1)
.

The proof of the above theorem closely follows that in [12,
Theorem 1] and is presented in the Appendix A.2. In the
following section, we now formally define what it means to
say an algorithm is fragile and show one of our key results for
the Generalized KLinf -UCB.

IV. REGRET TAIL FRAGILITY IN OPTIMAL ALGORITHMS

[20] proposed a key central result that lower bounds the high
regret tail events. This lower bound indicates that large-regret
events occur with some non-negligible probability, thereby
demonstrating the fragility of the algorithm. We formally
present this lower bound proposed by [20] in the below
Theorem IV.1 as follows.

Theorem IV.1 (Optimal Regret Tail Lower-bound). Let
π be MK-optimal algorithm. Then, for any environment
ν ∈ MK , a deviation family Dγ(T ) =

[
log1+γ(T ), (1 −

γ)T
]
, such that γ ∈ (0, 1), and for an i-th best arm,

lim inf
T→∞

inf
x∈Dγ(T )

logPπ
ν (Ni(T ) > x)

log x

≥ −
i−1∑
j=1

inf
ν̃∈M:

m(ν̃)<µi

KL(ν̃, νj)

KLinf(ν̃, µi)
.

(3)

The proof of the above theorem is provided in Section 3.2
of [20] for the special case where MK is an SPEF model.
Closely following this, the proof for general model classes is
given in Appendix A.3.

Now, note that each term inside the summation on the right-
hand side of the equation (3) denoted as Cνj

=
KL(ν̃,νj)

KLinf(ν̃,µi)
≥ 1.



This directly follows from the definition of KLinf(·, ·) with
µj > µi. For the special case when Cνj

= 1, the regret
tail event P(R(T ) > x) exhibits polynomial decay of order
x−1 on a logarithmic scale over a wide range of deviations.
This behavior matches a heavy-tailed Cauchy-type distribution
truncated at the time horizon T . We call this special case
Cauchy Fragility, which is defined as follows.

Definition IV.2 (Cauchy Fragility). Let π be MK-optimal
algorithm. We say that π achieves Cauchy Fragility if for any
environment ν ∈MK , deviation family D the following holds,

lim
T→∞

inf
x∈D

logPπ
ν(Ni(T ) > x)

log x
= −(i− 1)

It is important to emphasize that Cauchy Fragility represents
a stronger notion of fragility reflecting truly heavy-tailed regret
behavior. A natural question that arises is whether optimal
algorithms necessarily exhibit this stronger notion of Cauchy
Fragility. As noted earlier, this regime emerges only when
Cνj

= 1, a condition that holds when the underlying model
class M satisfies the property of discrimination equivalence,
which we formally define below.

Definition IV.3 (Discrimination Equivalance). We say a
distribution class M is discrimination equivalent if for any
distributions ν, ν′ ∈M such that m(ν) > m(ν′) the following
holds

inf
ν̃∈M:

m(ν̃)<m(ν′)

KL(ν̃, ν)

KLinf(ν̃,m(ν′))
= 1

The above definition generalizes the notion of discrimination
equivalence introduced in the previous work (See Definition
3 in [20]) for SPEF models. Note that, in the absence of
discrimination equivalence, some optimal algorithms exhibit
only a relaxed form of fragility, characterized by substantially
lighter regret tails. As this is a comparatively less catastrophic
form of fragility and matches the lower bound in (3), we refer
to this as Near-Robust Fragility, which is defined as follows.

Definition IV.4 (Near-Robust Fragility). Let π be MK-
optimal algorithm. We say that π achieves Near-Robust
Fragility if for any environment ν ∈MK , deviation family D
the following holds,

lim
T→∞

inf
x∈D

logPπ
ν(Ni(T ) > x)

log x
= −

i−1∑
j=1

inf
ν̃∈M:

m(ν̃)<µi

KL(ν̃, νj)

KLinf(ν̃, µi)

In particular, [20] established that without discrimination
equivalence, the KL-UCB algorithm [9], which is asymptoti-
cally optimal for SPEF bandit models, achieves Near-Robust
Fragility. However, their analysis is inherently restricted to
exponential family models and does not extend to broader
distribution classes. For instance, it does not apply to the em-
pirical KL-UCB algorithm, which is known to be asymptotically
optimal for bounded, finitely supported distributions [9] as well
as for heavy-tailed distributions [12]. In order to analyze the

fragility issues of optimal bandit algorithms beyond exponential
families, we present our key result in the following theorem.

Theorem IV.5 (Regret Tail Upper Bound for distribution
class L). Let π be LK-optimal Generalizeded KLinf -UCB
algorithm. Then, for any environment ν ∈ LK , a deviation
family Dγ(T ) =

[
log1+γ(T ), (1−γ)T

]
, such that γ ∈ (0, 1),

and for an i-th best arm,

lim sup
T→∞

inf
x∈Dγ(T )

logPπ
ν(Ni(T ) > x)

log x
≤ −(i− 1) (4)

We defer the proof of Theorem IV.5 to Appendix A.4.
Combining Theorems IV.1 and IV.5, we observe that for the
broader distribution class L, there exists a nontrivial gap
between the regret tail lower bound and the corresponding
upper bound. Consequently, this gap implies a comparatively
weaker form of fragility as the regret tail is lighter than that of
the Cauchy distribution. In the following sections, we provide
further insights on the Cauchy fragility and the Near-Robust
fragility.
Remark IV.6. When the class L satisfies the discrimination
equivalence property, the regret tail lower bound in (3)
simplifies to −(i− 1), which exactly matches the regret tail
upper bound in (4).

V. CAUCHY FRAGILITY OF OPTIMAL ALGORITHMS

From Remark IV.6, we see that in discrimination equiv-
alent classes, this optimal algorithm is Cacuchy Fragile, as
formalized in the following corollary.

Corollary V.1. Let π be LK-optimal Generalizeded KLinf -
UCB algorithm. If L is discrimination equivalant then, for
any environment ν ∈ LK , a deviation family Dγ(T ) =[
log1+γ(T ), (1 − γ)T

]
, such that γ ∈ (0, 1), π achieves

Cauchy fragility.

The proof of Corollary V.1 follows directly from the defini-
tions. In particular, substituting the discrimination equivalence
condition into the regret tail lower bound in (3), and comparing
it with the regret tail upper bound in (4) from Theorem IV.5,
yields the desired result. We emphasize that this result has
two important implications arising from the generality of the
distribution class L and the flexibility of the KLinf -UCB
framework. We elaborate on these implications as follows.
Fragility of KLinf -UCB under Moment-Bounded Models:
We consider the class of reward distributions whose (1 + ε)-
th moments are uniformly bounded. For ε > 0 and B > 0,
define LB,ε ≜

{
ν ∈ P(R) : Eν

[
|X|1+ε

]
≤ B

}
. We know,

every distribution ν ∈ LB,ε satisfies the structural conditions
imposed on the distribution class L in Assumptions II.2 and II.3.
Since the Generalized KLinf -UCB algorithm is asymptotically
optimal over LB,ε, the general fragility results established
for the broader class L immediately apply. This yields the
following corollary,

Corollary V.2. Let π be LK
B,ε-optimal Generalized KLinf -

UCB algorithm. If LB,ε is discrimination equivalant then, for
any environment ν ∈ LK

B,ε, a deviation family Dγ(T ) =



[
log1+γ(T ), (1 − γ)T

]
, such that γ ∈ (0, 1), π achieves

Cauchy fragility.

Fragility under Bounded-Support Models: We now
consider the class of reward distributions with bounded
support. For a constant a, b ∈ ℜ, define La,b ≜
{ν ∈ P(R) : Supp(ν) ⊆ [a, b]}. Similar to the above, every
distribution ν ∈ La,b satisfies the structural assumptions defin-
ing the class L (see Assumptions II.2 and II.3). As discussed in
Section III, the Generalized KLinf -UCB framework specializes
to the empirical KL-UCB algorithm of [9] under an appropriate
choice of the exploration function. In particular, empirical
KL-UCB corresponds to the choice fa(t) = g(t) + h(a, t)
with g(t) = log t + log log t and h(a, t) ≡ 0 for all arms a.
Since empirical KL-UCB is asymptotically optimal for the
bounded-support model La,b, the fragility results established
for the broader class L apply directly. This yields the following
corollary,

Corollary V.3. Let π be LK
B -optimal empirical KL-UCB algo-

rithm. If LB is discrimination equivalant then, for any environ-
ment ν ∈ LK

B , a deviation family Dγ(T ) =
[
log1+γ(T ), (1−

γ)T
]
, such that γ ∈ (0, 1), π achieves Cauchy fragility.

Corollary V.2 follows immediately from Corollary V.1
by a direct specialization of the distribution class under
consideration. In contrast, the proof of Corollary V.3 doesn’t
directly follow because of the exploration function being
different from Generalized KLinf -UCB algorithm. We present
the detailed proof of Corollary V.3 in Appendix A.5.

VI. NEAR-ROBUST FRAGILITY OF OPTIMAL ALGORITHMS

In the preceding section, we characterized the regret
tail (fragility) behavior under the additional assumption of
discrimination equivalence. While this condition highlights
a stronger fragility issue, it can be restrictive in practice.
This naturally motivates the following question: Do optimal
algorithms exhibit near-robust fragility in the absence of
discrimination equivalence? Current results show a non-trivial
gap between the lower and upper bounds for the broad
distribution class L. Nevertheless, for a more structured
subclass, bounded and finitely supported distributions, we
are able to substantially refine our analysis. Formally, let
La,b,s denote the class of distributions supported on at
most s < ∞ points contained in the interval [a, b], i.e.,
La,b,s ≜ {ν ∈ P(ℜ) : Supp(ν) ⊆ [−a, b], |Supp(ν)| ≤ s}.
In particular, we show that the empirical KL-UCB algorithm,
which is known to be asymptotically optimal for this model
class La,b,s, actually achieves Near-Robust Fragility as formally
stated in Theorem VI.1 as follows,

Theorem VI.1 (Near-Robust Fragility of empirical
KL-UCB). Let π be LK

a,b,s-optimal empirical KL-UCB al-
gorithm. Then, for any environment ν ∈ LK

B,s, a deviation
family Dγ(T ) =

[
log1+γ(T ), (1−γ)T

]
, such that γ ∈ (0, 1),

and for an i-th best arm,

lim
T→∞

inf
x∈Dγ(T )

logPπ
ν(Ni(T ) > x)

log x

= −
i−1∑
j=1

inf
ν̃∈M:

m(ν̃)<µi

KL(ν̃, νj)

KLinf(ν̃, µi)

Proof Outline: The proof proceeds by decomposing the regret-
tail event Pπ

ν(Ni(T ) > x) into two complementary event
components. The first component is controlled by partitioning
the event, according to the number of pulls of sub-optimal arms,
and applying a union bound over the resulting sub-events. Each
such subevent is then bounded using a finite-sample version of
Sanov’s theorem [23], [24], which yields sharp exponential de-
viation bounds for empirical measures. The second component
is controlled using the concentration properties of the KLinf

functional established in Assumption II.3. Combining these
bounds yields the desired upper bound on the regret tail. A
complete provided in Appendix A.6.

VII. CONCLUSION, LIMITATIONS AND FUTURE WORKS

In this work, we investigated the regret-tail behavior of
stochastic multi-armed bandit algorithms that are optimal over
a broad class of reward distributions. Our results significantly
extend earlier fragility phenomena previously established
primarily for exponential-family models to much broader
distribution classes, including moment-bounded and bounded-
support distributions. We show that, in general, optimal algo-
rithms for this broader class exhibit a relatively weaker form
of fragility, in the sense that their regret tails are lighter than
those of a Cauchy distribution. However, under the additional
condition of discrimination equivalence, optimal algorithms
necessarily display strong Cauchy fragility: the regret tail
becomes heavy, implying that large-regret events occur with
non-negligible probability. Furthermore, in the absence of
discrimination equivalence, we show that optimal algorithms
for bounded and finitely supported reward models exhibit
a strictly weaker form of near-robust fragility, wherein the
regret-tail upper bound exactly matches the optimal regret-tail
lower bound. Despite these advances, several limitations remain.
For the general distribution class L, a gap persists between
the regret-tail upper and lower bounds when discrimination
equivalence does not hold. Closing this gap and designing
algorithms that achieve improved tail robustness constitute
important directions for future work. Further, the study of
fragility issues in the Thompson sampling [6], [25] remains a
promising direction.
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APPENDIX

A.1 Generality of Distribution Class L
In the introduction section, the properties of the distribution class L are defined in Assumption II.2 and Assumption II.3.

Let’s define this distribution class as follows.

L = {ν ∈ P(ℜ) : ν follows Assumption II.2 and Assumpiton II.3}

Now we provide two distribution classes that are examples of L.
Moment Bounded Distributions: For ε > 0 and B > 0, define moment bounded distribution class as follows

LB,ε ≜
{
ν ∈ P(ℜ) : Eν

[
|X|1+ε

]
≤ B

}
This distribution class satisfies Assumptions II.2 and II.3. In particular, the validity of Assumption II.2 for the moment-bounded
class of distributions is established in Proposition 5 of [12]. Similarly, Assumption II.3 follows directly from the arguments
used in Lemma 6 of [12]. We refer the reader to the aforementioned results for a rigorous and complete proof.
Bounded Support Distributions: For constants a, b ∈ ℜ, define bounded support distribution class

La,b ≜ {ν ∈ P(ℜ) : Supp(ν) ⊆ [a, b]}

This distribution class also satisfies the above assumptions. The proof follows along the same lines as those in [12], with
an appropriate modification that employs the dual representation of KLinf for bounded-support distributions as developed in
Section 4 of [3].

A.2 Proof of Theorem III.1
This proof follows the argument of Theorem 1 in [12], specialized to the case where the batch size equals one in each trial.

Take t ≥ K + 1, and without loss of generality, assume that arm 1 is optimal. Then the event that, at the beginning of round t,
a sub-optimal arm a ̸= 1 attains the maximum index i.e., the event {At = a} is contained in

{U1(Na(t), t) ≤ µ1 and At = a}
⋃
{Ua(Na(t), t) > µ1 and At = a} (5)

The left-hand event of (5) characterizes the underestimation of the optimal arm’s index relative to its true mean at time t, while
the right-hand event corresponds to an overestimation of the sub-optimal arm’s index beyond the mean of the optimal arm.
Recall that during the initial K rounds, each arm is played exactly once as part of the initialization procedure. Thus,

Na(T ) = 1 +

T∑
t=K+1

I{At = a}

E[Na(T )] ≤ 1 + E[DT ] + E[ET ]

The terms DT and ET are as follows:

DT :=

T∑
t=K+1

I (U1(Na(t), t) ≤ µ1, At = a) , and ET :=

T∑
t=K+1

I(Ua(Na(t), t) > µ1, At = a).

Bounding the overestimation of sub-optimal arms in ET : By the definition of the index employed by the algorithm, for
any t ≥ K + 1 and x ∈ R, the event {Ua(Na(t), t) ≥ x} is equivalent to {Na(t)KLinf(ν̂a(t), x) ≤ fa(t)}. Let d > 0 satisfy
mina>1 KLinf(νa, µ1) ≥ d. Then the indicator of the event {Ua(Na(t), t) ≥ µ1, At = a} is dominated by the sum of the two
events E1t and E2t defined below:

E1t = I
(
KLinf(ν̂a(t), µ1) ≤

fa(t)

Na(t)
, KLinf(ν̂a(t), µ1) > KLinf(νa, µ1)− d, At = a

)
E2t = I (KLinf(ν̂a(t), µ1) ≤ KLinf(νa, µ1)− d, At = a) .

Thus,

ET ≤
T∑

t=K+1

E1t +

T∑
t=K+1

E2t

We can clearly see that E1t, is bounded above by I (Na(t) (KLinf(νa, µ1)− d) ≤ fa(t), At = a) , giving
T∑

t=K+1

E1t ≤
T∑

t=1

E1t ≤
T∑

t=1

I
(
Na(t) ≤

fa(t)

KLinf(νa, µ1)− d
,At = a

)
(6)



Now, in order to upper bound the RHS of equation (6), we use the following lemma from [12]. For completeness, we state
the result as follows:

Lemma A.1. For T ≥ K + 1, η̃ ≥ 0, d > 0,Bj be the size of the jth batch and N be the number of batches till time T then
N∑
j=1

BjE1j ≤ (1 + η̃)

(
log(T )

KLinf(νa, µ1)− d
+O (log log(T ))

)
.

We use the above Lemma A.1 with η̃ = 0 to essentially derive the following bounds
T∑

t=1

E1t ≤
log(T )

KLinf(νa, µ1)− d
+O(log log(T )).

For the exact form of the O(log log(T )) term above, we refer the reader to look at the proof of Lemma 14 in [12].
Note that for any constant c > 0, 1− e−c ≥ c

1+c because ec ≥ 1 + c. Now in order to control the events in E2t we directly
use AssumptionII.3 with δ = µ1 − µa to get an upper bound as follows

E

(
T∑

t=K+1

E2t

)
≤

T∑
t=K+1

P(KLinf(ν̂a(t), µ1) ≤ KLinf(νa, µ1)− d)

≤
T∑

t=K+1

e−tcνad
2

≤
∞∑
t=2

e−tcνad
2

=
e−2cνad

2

1− ecνad
2

≤ 1 +
1

cνa
d2

Bounding underestimation of the optimal arm in DT : This term contributes only a constant amount to the regret up to
time T . To bound it, we invoke Lemma 18 from [12], which we restate below for completeness.

Lemma A.2. For T > K,

E (DN ) ≤

{
(1 + η̃)

(
1

(logK)2 + π2

6(log(1+η̃))2

)
, for η̃ > 0

1+log(K+1)
(log(K+1))2 , for η̃ = 0.

Combining everything for η̃ = 0, we get

E (Na(T )) ≤
log(T )

KLinf (νa, µ1)− d
+O(log log(T )) +

1

cνad
2
+

1 + log(K + 1)

(log(K + 1))2
+ 2 (7)

The above bound in equation 7 can be optimal over d. Setting d to (c′νa
(KLinf(νa, µ1))

2/ log T )1/3, where c′νa
= 2o(1)/cνa

we get that

E[Na(T )] ≤
log T

KLinf(νa, µ1)
+

3(log T )2/3(c′µ)
1/3

2(KLinf(µa,m))4/3
+O((log T )1/3) +O(log log(T ))

Finally, taking the limit, we get,

lim sup
T→∞

E[Na(T )]

log(T )
≤ 1

KLinf(νa, µ1)
.

A.3 Proof of Theorem IV.1
Two-arm setting: We first establish the lower bound for the two-armed bandit setting and subsequently extend the argument to
the general multi-armed case. Without loss of generality, assume that the mean rewards satisfy µ1 > µ2. Let M denote an
arbitrary class of reward distributions.

Lemma A.3. Let π be M2-optimal algorithm. Then, for any environment ν ∈M2, such that γ ∈ (0, 1), and for the second
arm,

lim inf
T→∞

logPπ
ν(N2(T ) > (1− γ)T )

log T
≥ inf

ν̃1:E[ν̃1]≤µ2

− KL(ν̃1, ν1)

KLinf(ν̃1, µ2)



Proof of Lemma A.3. Consider a two-armed stochastic bandit problem with an environment ν = (ν1, ν2). Introduce an alternative
environment ν̃ = (ν̃1, ν2) ∈M2 whose arm means satisfy µ̃1 < µ2; hence, arm 1 becomes sub-optimal under ν̃. For a fixed
γ ∈ (0, 1), define the event E = {N2(T ) > (1− γ)T}. Applying a change-of-measure argument from ν to ν̃, we obtain

Pπ
ν

(
E
)
=

∫
E

T∏
t=1

dPν

dPν̃
dPν̃ =

∫
E

eLT (ν,ν̃)dPν̃ (8)

Here, we define the log-likelihood-ratio process LT (ν, ν̃) as follows

LT (ν, ν̃) := log

( T∏
t=1

dPν

dPν̃

(
X1(t)

))
= log

(N1(T )∏
t=1

dPν1

dPν̃1

(
X1(t)

))
=

N1(T )∑
t=1

log

(
dPν1

dPν̃1

(
X1(t)

))
Now we use the following result from [20], which is stated below for completeness.

Lemma A.4. Let π be an MK-optimal algorithm. Then, for any environment ν ∈MK and for each sub-optimal arm i,

Ni(T )

log T

Pπ
ν−−−−→

T→∞

1

KLinf(νi, µ1)

Note that in the above Lemma A.4, the convergence is in terms of probability. Now LT (ν,ν
′) can be written as follows.

LT (ν, ν̃) = N1(T )
1

N1(T )

N1(T )∑
t=1

log

(
dPν1

dPν̃1

(
X1(t)

))
.

Under the environment ν̃ as arm 1 is suboptimal thus applying the Lemma A.4 as T →∞,

N1(T )

log T

Pπ
ν̃−−−−→

T→∞

1

KLinf(ν̃1, µ2)
(9)

Under the environment ν̃, by the weak law of large numbers as T →∞,

1

N1(T )

N1(T )∑
t=1

log

(
dPν1

dPν̃1

(
X1(t)

)) Pπ
ν̃−−→ −KL(ν̃1, ν1), (10)

Combining equation (9) and (10), we get that under the environment ν̃,

LT (ν, ν̃) =

N1(T )∑
t=1

log

(
dPν1

dPν̃1

(
X1(t)

)) Pπ
ν̃−−−−→

T→∞
− log T

KLinf(ν̃1, µ2)
·KL(ν̃1, ν1)

Now for any ε > 0 with Pπ
ν̃ converging to 1 as T →∞, the following holds.

LT (ν, ν̃) =

N1(T )∑
t=1

log

(
dPν1

dPν̃1

(
X1(t)

))
≥ − (1 + ε)

KL(ν̃1, ν1)

KLinf(ν̃1, µ2)
log T (11)

Now, using similar argument as in equation (8), for any cT ∈ ℜ, we can write

Pπ
ν̃

(
E
)
=

∫
E∩{LT<cT }

e−LT (ν,ν̃)dPν +

∫
E∩{LT≥cT }

e−LT (ν,ν̃)dPν

≤
∫
{LT<cT }

e−LT (ν,ν̃)dPν +

∫
E

e−cT dPν

≤ Pπ
ν̃({LT < cT }) + e−cT Pπ

ν(E)

=⇒ Pπ
ν(E) ≥ ecT

(
Pπ
ν̃(E)− Pπ

ν̃(LT < cT )
)

(12)

Now taking cT = −(1 + ε) KL(ν̃1,ν1)
KLinf (ν̃1,µ2)

log T , then under ν̃ we have Pπ
ν̃(LT < cT )→ 0 and Pπ

ν̃(E)→ 1. Now taking log in
equation 12, taking ε ↓ 0 and finally optimizing over the free variable ν̃1 we have,

lim inf
T→∞

logPπ
ν(N2(T ) > (1− γ)T )

log T
≥ inf

ν̃1:E[ν̃1]≤µ2

− KL(ν̃1, ν1)

KLinf(ν̃1, µ2)



Multi-arm setting: Now we extend the above result to the multi-armed bandit setting with more than two arms. Without
loss of generality, suppose that the means in the environment ν = (ν1, ν2, . . . , νK) satisfy µ1 > µ2 > · · · > µK . Consider a
new environment ν̃ = (ν̃1, ν̃2, . . . , ν̃i−1, νi, . . . , νK) ∈MK with respective means satisfying µ̃j < µi for all j < i. Under this
environment, arm i becomes the optimal arm. Let the event E = {Ni(T ) > (1− γ)T} for some γ ∈ (0, 1). Thus, by a change
of measure from ν to ν̃, we have

Pπ
ν

(
E
)
=

∫
E

T∏
t=1

dPν

dPν̃

(
X1(t)

)
dPν̃ =

∫
E

eLT (ν,ν̃)dPν̃

Similarly, the log-likelihood-ratio process LT (ν, ν̃) is as follows

LT (ν, ν̃) := log

( T∏
t=1

dPν

dPν̃

(
X1(t)

))
= log

( i−1∏
j=i

Nj(T )∏
t=1

dPνj

dPν̃j

(
X1(t)

))
=

i−1∑
j=1

Lj(ν, ν̃)

For each arm j ∈ {1, 2, . . . , i− 1], define Lj(ν, ν̃) as follows

Lj(ν, ν̃) =

Nj(T )∑
t=1

log

(
dPνj

dPν̃j

(
X1(t)

))
Proceeding along the same lines as in the two-armed bandit analysis, the preceding arguments can be extended to the general
multi-armed setting, leading to the following lemma.

Lemma A.5. Let π be MK -optimal algorithm. Then, for any environment ν ∈MK , such that γ ∈ (0, 1), for any suboptimal
arm-i, the following holds

lim inf
T→∞

logPπ
ν (Ni(T ) > (1− γ)T )

log T
≥ −

i−1∑
j=1

inf
ν̃j :E[ν̃j ]≤µi

KL(ν̃j , νj)

KLinf(ν̃j , µi)
(13)

To extend the above lemma to the deviation regime Dγ(T ) =
[
log1+γ(T ), (1 − γ)T

]
for any γ ∈ (0, 1), we invoke the

following result from [20], which is stated below for completeness.

Lemma A.6. Let ν be any bandit environment with Bγ(T ) = [g(T ), (1−γ)T ] and any strictly increasing function g : (1,∞)→
(0,∞) such that lim

t→∞
g(t)
log t =∞ and g(t) = o(t), and let i be a sub-optimal arm in ν.

Now, if the following condition holds

lim inf
T→∞

logPπ
ν

(
Ni(T ) > (1− γ)T

)
log T

≥ −ci(ν).

Then,

lim inf
T→∞

inf
x∈Bγ(T )

logPπ
ν

(
Ni(T ) > x

)
log x

≥ −ci(ν).

Applying the above lemma in equation (13), we show the desired result as follows:

lim inf
T→∞

inf
x∈Dγ(T )

logPπ
ν(Ni(T ) > x)

log(x)
≥

i−1∑
j=1

inf
ν̃j :E[ν̃j ]≤µi

− KL(ν̃j , νj)

KLinf(ν̃j , µi)

A.4 Proof of Theorem IV.5
Two-arm setting: To establish this theorem, we first prove the following lemma in a simplified two-armed bandit setting where
arm 1 is optimal, i.e., µ1 > µ2. As introduced earlier, let L denote the class of reward distributions satisfying Assumptions II.2
and II.3.

Lemma A.7. Let π be LK-optimal Generalizeded KLinf -UCB algorithm. Then, for any environment ν ∈ LK , for xT =
log1+γ(T ) such that γ ∈ (0, 1), and for the second arm,

lim sup
T→∞

logPπ
ν(N2(T ) > xT )

log xT
≤ −1 (14)

Proof of Lemma A.7. Consider a two-armed multi-armed bandit problem with environment ν = (ν1, ν2). Without loss of
generality, assume µ1 > µ2. Let τ2(m) denote the time at which arm 2 is pulled for the mth time, and fix any δ ∈ (0, µ1−µ2).
Further, let Cν ≥ 1 be a constant satisfying xCν

T < T . We now derive an upper bound on the following event.



Pπ
ν (N2(T ) > xT ) ≤ Pπ

ν (∃ t ∈ (τ2(xT ), T ] s.t. U1(N1(t− 1), t− 1) ≤ U2(N2(t− 1), t− 1))

≤ Pπ
ν (∃ t ∈ (xT , T ] s.t. U1(N1(t− 1), t− 1) ≤ U2(xT , T ))

≤ Pπ
ν (∃ t ∈ (xT , T ] s.t. U1(N1(t− 1), t− 1) ≤ µ2 + δ) (15)
+ Pπ

ν (U2(xT , T ) > µ2 + δ) (16)
≤ Pπ

ν (∃ t ∈ (xT , T ] s.t. U1(N1(t− 1), t− 1) ≤ µ1)

+ Pπ
ν (U2(xT , T ) > µ2 + δ)

= Pπ
ν

(
∃ t ∈ (xT , x

Cν

T ] s.t. U1(N1(t− 1), t− 1) ≤ µ1

)
︸ ︷︷ ︸

A

(17)

+ Pπ
ν

(
∃ t ∈ (xCν

T , T ] s.t. U1(N1(t− 1), t− 1) ≤ µ1

)
︸ ︷︷ ︸

B

+ Pπ
ν (U2(xT , T ) > µ2 + δ)︸ ︷︷ ︸

C

Controlling the Term A and B: To upper bound the term A, we invoke Assumption II.2 for the distribution class L with the
exploration function fa(t) = log(t) + 2 log log(t) + 2 log(1 +Na(t)) + 1. The bound then follows through the steps outlined
below.

A = Pπ
ν

(
∃ t ∈ (xT , x

Cν

T ] s.t. U1(N1(t− 1), t− 1) ≤ µ1

)
= Pπ

ν

(
∃ t ∈ (xT , x

Cν

T ] s.t. KLinf(ν̂1(t− 1), µ1) ≥
f1(t− 1)

N1(t− 1)

)
= Pπ

ν{∃ t ∈ (xT , x
Cν

T ] s.t. N1(t− 1)KLinf(ν̂1(t− 1), µ1)− 2 log(1 +N1(t− 1))− 1

≥ log(t− 1) + log(log(t− 1))}
≤ Pπ

ν{∃ t ∈ (xT , x
Cν

T ] s.t. N1(t− 1)KLinf(ν̂1(t− 1), µ1)− 2 log(1 +N1(t− 1))− 1

≥ log(xT ) + log(log(xT ))}
≤ Pπ

ν{∃ t ∈ N s.t. N1(t− 1)KLinf(ν̂1(t− 1), µ1)− 2 log(1 +N1(t− 1))− 1

≥ log(xT ) + log(log(xT ))}
≤ exp(− log xT − log log xT )

=
1

xT log xT

Similarly, by applying the same arguments as above, the probability of the event appearing in term B can be upper bounded
in an analogous manner, as detailed below.

B ≤ 1/(xCν

T log xCν

T )

Finally, summing the contributions from the terms A and B and taking the logarithm, we obtain the following bound.

log(A+B) ≤ −Cν log xT − log log xCν

T + log(1 + xCν−1
T Cν)

=⇒ log(A+B)

log xT
≤ −Cν −

log(Cν log xT )

log xT
+

log(1 + xCν−1
T Cν)

log xT

=⇒ lim sup
T→∞

log(A+B)

log xT
≤ −Cν + (Cν − 1) = −1

Controlling Term C: To upper bound the term C above, we apply Assumption II.3 with d = KLinf(ν2, µ2 + δ)− f(T )
xT

. Note



that f(T )
xT

= 1
fγ(T ) it follows that for all sufficiently large T , we have d > 0 and for any constant cν > 0.

C = Pπ
ν (U2(xT , T ) > µ2 + δ)

= Pπ
ν

(
KLinf(ν̂2(xT ), µ2 + δ) ≤ f(T )

xT

)
= Pπ

ν

(
KLinf(ν̂2(xT ), µ2 + δ) ≤ KLinf(ν2, µ2 + δ)−

(
KLinf(ν2, µ2 + δ)− f(T )

xT

))
≤ exp

[
−xT cν

(
KLinf(ν2, µ2 + δ)− f(T )

xT

)2
]

It can be easily shown that as T →∞, C
A+B → 0. Finally, summing all the terms, we get

lim sup
T→∞

logPπ
ν(N2(T ) > xT )

log xT
= lim sup

T→∞

log(A+B +C)

log xT

= lim sup
T→∞

log(A+B)

log xT
+ lim sup

T→∞

log
(
1 + C

A+B

)
log xT

≤ lim sup
T→∞

log(A+B)

log xT
+ lim sup

T→∞

C
A+B

log xT

≤ −1

Multi-arm setting: We now extend the above argument to the general multi-armed bandit setting with more than two arms.
Without loss of generality, assume that µ1 > µ2 > · · · > µK in the environment ν = (ν1, ν2, . . . , νK) ∈ LK . For any
suboptimal arm i ≥ 3, choose δ ∈ (0, µi−1−µi). Then, in direct analogy with equations (15) and (16), we obtain the following
decomposition:

Pπ
ν (Ni(T ) > xT ) ≤ Pπ

ν

(
∃ t ∈ (xT , T ] s.t. max

1≤j≤i−1
Uj(Nj(t− 1), t− 1) ≤ µi + δ

)
+ Pπ

ν (Ui(xT , T ) > µi + δ)

≤ Pπ
ν (∀1 ≤ j ≤ i− 1,∃ t ∈ (xT , T ] s.t. Uj(Nj(t− 1), t− 1) ≤ µi + δ)

+ Pπ
ν (Ui(xT , T ) > µi + δ)

(a)
=

i−1∏
j

Pπ
ν (∃ t ∈ (xT , T ] s.t. Uj(Nj(t− 1), t− 1) ≤ µi + δ) (18)

+ Pπ
ν (Ui(xT , T ) > µi + δ)

(a) is true due to the independence of arms rewards from different arms. Now each of the terms in (18) can be bounded
above by the above arguments. Finally, taking log, the product term in (18) becomes a summation. Now we get our desired
result for the sub-optimal arm-i as follows

Lemma A.8. Let π be LK-optimal Generalizeded KLinf -UCB algorithm. Then, for any environment ν ∈ LK , for xT =
log1+γ(T ) such that γ ∈ (0, 1), and for the ith sub-optimal arm,

lim sup
T→∞

logPπ
ν(Ni(T ) > xT )

log xT
≤ −(i− 1) (19)

To extend the above lemma to the deviation family Dγ(T ) =
[
log1+γ(T ), (1− γ)T

]
for γ ∈ (0, 1) we invoke the following

result from [20], which we restate below for completeness.

Lemma A.9. Let ν be any bandit environment with Bγ(T ) = [g(T ), (1−γ)T ] and any strictly increasing function g : (1,∞)→
(0,∞) such that lim

t→∞
g(t)
log t =∞ and g(t) = o(t), and let i be a sub-optimal arm in ν.

Now, if the following condition holds

lim inf
T→∞

logPπ
ν

(
Ni(T ) > g(T )

)
log g(T )

≤ −ci(ν). (20)



Then,

lim inf
T→∞

inf
x∈Bγ(T )

logPπ
ν

(
Ni(T ) > x

)
log x

≤ −ci(ν). (21)

Applying the above lemma in equation (19), we show the desired result as follows:

lim sup
T→∞

inf
x∈Dγ(T )

logPπ
ν(Ni(T ) > x)

log x
≤ −(i− 1) (22)

A.5 Proof of Corollary V.3
The proof of this corollary proceeds along the same lines as the preceding argument, with minor modifications. Let π

denote the empirical KL-UCB algorithm. As shown by [12, Proposition 4], this algorithm is optimal for the bounded-support
distribution model LK

a,b when the exploration function is chosen as fa(t) = log t+ log log t. Consequently, following the proof
of Lemma A.7, we obtain an analogous decomposition and can define the corresponding term A, in parallel to equation (17),
as follows.

A = Pπ
ν

(
∃ t ∈ (xT , x

Cν

T ] s.t. U1(N1(t− 1), t− 1) ≤ µ1

)
= Pπ

ν

(
∃ t ∈ (xT , x

Cν

T ] s.t. KLinf(ν̂1(t− 1), µ1) ≥
f(t− 1)

N1(t− 1)

)
= Pπ

ν

(
∃ t ∈ (xT , x

Cν

T ] s.t. N1(t− 1)KLinf(ν̂1(t− 1), µ1) ≥ log(t− 1) + log log(t− 1)
)

= Pπ
ν{∃ t ∈ (xT , x

Cν

T ] s.t. N1(t− 1)KLinf(ν̂1(t− 1), µ1)− 2 log(1 +N1(t− 1))− 1

≥ log(t− 1) + log(log(t− 1))− 2 log(1 +N1(t− 1))− 1}
(b)

≤ Pπ
ν{∃ t ∈ (xT , x

Cν

T ] s.t. N1(t− 1)KLinf(ν̂1(t− 1), µ1)− 2 log(1 +N1(t− 1))− 1

≥ log(xT ) + log(log(xT ))− 2 log(1 + T − xT )− 1}
≤ Pπ

ν{∃ t ∈ N s.t. N1(t− 1)KLinf(ν̂1(t− 1), µ1)− 2 log(1 +N1(t− 1))− 1

≥ log(xT ) + log(log(xT ))− 2 log(1 + T − xT )− 1}
≤ exp(− log xT − log log xT + 2 log(1 + T − xT ) + 1)

=
e

xT log xT (1 + T − xT )2

(b) is true because N2(T ) > xT =⇒ N1(t− 1) ≤ N1(T ) ≤ T −xT . Similarly, following the above steps for the probability
of event in term B can also be upper bounded as follows

B ≤ e

xCν

T log xCν

T (1 + T − xCν

T )2

As Cν ≥ 1, we know T − xCν

T ≤ T − xT . Finally summing both the terms in A and B and taking the log, we get the
following bound.

log(A+B) ≤ 2− Cν log xT − log log xCν

T + log

1 + xCν−1
T Cν

(
1 + T − xCν

T

1 + T − xT

)2


=⇒ log(A+B)

log xT
≤ 2

log xT
− Cν −

log(Cν log xT )

log xT
+

log(1 + xCν−1
T Cν)

log xT

=⇒ lim sup
T→∞

log(A+B)

log xT
≤ −Cν + (Cν − 1) = −1

Proceeding with arguments analogous to those used in the two-armed setting in the proof of Lemma A.7, and subsequently
extending them to the multi-armed case, and finally using Lemma A.9 for the deviation family Dγ(T ) =

[
log1+γ(T ), (1−γ)T

]
,

we obtain a similar upper-bound as in Theorem IV.5. Now under discrimination equivalence using the optimal regret tail lower
bound from equation (3) we finally get the tight characterization as follows.

For ith sub-optimal arm,

lim
T→∞

inf
x∈Dγ(T )

logPπ
ν(Ni(T ) > x)

log x
= −(i− 1)

A.6 Proof of Theorem VI.1



Two-arm setting: As before, we begin by establishing a simplified version of the upper bound in the two-armed bandit setting,
which will subsequently be extended to the general multi-armed case. Without loss of generality, we assume for the remainder
of this argument that µ1 > µ2.

Lemma A.10. Let π be L2
B,s-optimal empirical KL-UCB algorithm. Then, for any environment ν ∈ L2

B,s, for xT =

log1+γ(T ) such that γ ∈ (0, 1), and for the second arm,

lim sup
T→∞

logPπ
ν(N2(T ) > xT )

log xT
≤ inf

ν̃1:E[ν̃1]≤µ2

− KL(ν̃1, ν1)

KLinf(ν̃1, µ2)

Proof of Lemma A.10. Consider a 2-arm multi-armed bandit problem with environment ν = (ν1, ν2). We consider µ1 > µ2

without the loss of generality. Let’s take τ2(m) denote the time when arm 2 is played for the mth time. Now for δ ∈ (0, µ1−µ2),

Pπ
ν (N2(T ) > xT ) ≤ Pπ

ν (∃ t ∈ (τ2(xT ), T ] s.t. U1(N1(t− 1), t− 1) ≤ U2(N2(t− 1), t− 1))

≤ Pπ
ν (∃ t ∈ (xT , T ] s.t. U1(N1(t− 1), xT ) ≤ U2(xT , T ))

≤ Pπ
ν (∃ t ∈ (xT , T ] s.t. U1(N1(t− 1), xT ) ≤ µ2 + δ)︸ ︷︷ ︸

A

+ Pπ
ν (U2(xT , T ) > µ2 + δ)︸ ︷︷ ︸

B

.

Controlling the first term A: Now in order to upper bound this term we use Sanov’s theorem [23], [24] which is stated
below for completeness.

Theorem A.11 (Sanov’s Theorem). Let P(Σ) denotes the class of distributions over an underlying set Σ. For T ⊂ P(Σ) be a
subset of distribution with T 0 and T̄ denoting the interior and closure of T respectively. Now (Xn)n∈N be a sequence of i.i.d
random variables from drawn from a distribution ν ∈ P(Σ). The sequence of the empirical distributions (ν̂n)n∈N satisfy the
large deviation principle with rate function KL(., ν) as follows

− inf
ν′∈T 0

KL(ν′, ν) ≤ lim inf
n→∞

logP(ν̂n ∈ T ) ≤ lim sup
n→∞

logP(ν̂n ∈ T ) ≤ − inf
ν′∈T̄

KL(ν′, ν)

The above theorem represents an asymptotic result. However when Σ is a finite set, we get an exact finite sample result with
is given in the following equation

P(ν̂n ∈ T ) ≤ (n+ 1)|Σ| exp{−n inf
ν′∈T̄

KL(ν′, ν)} (23)

In order to apply (23), let us assume there exists a distribution P ∗ ∈ LB,s such that KLinf(P
∗, µ2 + δ) = f(xT )

m with
E[P ∗] ≤ µ2+ δ. Now we construct a neighborhood VP∗ around P ∗ as follows VP∗ = {P ∈ LB,s : KLinf(P, µ2+ δ) ≥ f(xT )

m }.
Thus, we can further bound the term A as follows.

A = Pπ
ν (∃ t ∈ (xT , T ] s.t. U1(N1(t− 1), xT ) ≤ µ2 + δ)

≤ Pπ
ν (∃ t ∈ N s.t. U1(N1(t), xT ) ≤ µ2 + δ)

= Pπ
ν (∃m ∈ N s.t. U1(m,xT ) ≤ µ2 + δ)

≤
∞∑

m=1

Pπ
ν

(
KLinf(ν̂1(m), µ2 + δ) ≥ f(xT )

m

)
=

∞∑
m=1

Pπ
ν (ν̂1(m) ∈ VP∗)

(c)

≤
∞∑

m=1

exp

[
−m inf

ν′∈V̄P∗
KL(ν′, ν1) + o(m)

]
(c) is true by using using the finite version of Sanov’s Theorem for finite support distributions with o(m) = log(1 +m)s.

Now let ν∗ ∈ VP∗ be a minimizer of infν′∈V̄P∗ KL(ν′, ν1). Let’s suppose there exists a distribution ν̃ ∈ LB,s such that
KL(ν∗, ν1) ≥ KL(ν̃, ν1). Now we define sT and Cν as follows.

sT =
2f(xT )

KL(ν̃, ν1)
Cν such that Cν = inf

ν̃1:E[ν̃1]≤µ2+δ

KL(ν̃1, ν1)

KLinf(ν̃1, µ2 + δ)

Notice that Cν ≥ 1 because by definition KLinf(ν̃1, µ2+δ) ≤ KL(ν̃1, ν1). Also, as ν∗ ∈ VP∗ , by definition of V∗, KLinf(ν
∗, µ2+

δ) ≥ f(xT )/m. Thus for m > sT ,
1

2
KL(ν̃, ν1) ≥

f(xT )

m
Cν



Now the term A can be upper bounded as follows.

A ≤
∞∑

m=1

exp [−mKL(ν∗, ν1) + o(m)]

=

sT∑
m=1

exp [−mKL(ν∗, ν1) + o(m)] +

∞∑
m=sT+1

exp [−mKL(ν∗, ν1) + o(m)]

=

sT∑
m=1

exp

[
−mKLinf(ν

∗, µ2 + δ) · KL(ν∗, ν1)

KLinf(ν∗, µ2 + δ)
+ o(m)

]
+

∞∑
m=sT+1

exp [−mKL(ν∗, ν1) + o(m)]

≤
sT∑

m=1

exp

[
−f(xT ) · inf

ν̃1:E[ν̃1]≤µ2+δ

KL(ν̃1, ν1)

KLinf(ν̃1, µ2 + δ)
+ o(m)

]
+

∞∑
m=sT+1

exp [−mKL(ν∗, ν1) + o(m)]

≤
sT∑

m=1

exp [−f(xT ) · Cν + o(m)] +

∞∑
m=sT+1

exp [−mKL(ν̃, ν1) + o(m)]

≤
sT∑

m=1

exp [−f(xT ) · Cν ] exp[o(m)] +

∞∑
m=sT+1

exp
[
−f(xT )Cν −

m

2
·KL(ν̃, ν) + o(m)

]
= exp [−f(xT ) · Cν ]

(
sT∑

m=1

exp[o(m)] +

∞∑
m=sT+1

exp
[
−m

2
·KL(ν̃, ν) + o(m)

])

Controlling the second term B: The term B can be upper bounded using Assumption II.3 with d = KLinf(ν2, µ2+ δ)− f(T )
xT

.
Note that f(T )

xT
= 1

fγ(T ) it follows that for all sufficiently large T , we have d > 0 and for any constant cν > 0.

B = Pπ
ν (U2(xT , T ) > µ2 + δ)

= Pπ
ν

(
KLinf(ν̂2(xT ), µ2 + δ) ≤ f(T )

xT

)
= Pπ

ν

(
KLinf(ν̂2(xT ), µ2 + δ) ≤ KLinf(ν2, µ2 + δ)−

(
KLinf(ν2, µ2 + δ)− f(T )

xT

))
≤ exp

[
−xT cν

(
KLinf(ν2, µ2 + δ)− f(T )

xT

)2
]

Finally, summing the contributions from the terms A and B and taking the logarithm, we obtain the following bound.

log(A+B) ≤ −f(xT ) · Cν

+ log

(
sT∑

m=1

exp[o(m)] +

∞∑
m=sT+1

exp
[
−m

2 ·KL(ν̃, ν) + o(m)
]

︸ ︷︷ ︸
+ exp

[
−xT cν

(
KLinf(ν2, µ2 + δ)− f(T )

xT

)2
+ f(xT )Cν

]
︸ ︷︷ ︸

G

)

For s-finite support distribution o(m) = log(m+ 1)s we have,



logG

f(xT )
=

1

f(xT )
log

(
sT∑

m=1

exp[o(m)] +

∞∑
m=sT+1

exp
[
−m

2 ·KL(ν̃, ν) + o(m)
]

+ exp

[
−xT · cν

(
KLinf(ν2, µ1)−

f(T )

xT

)2

+ Cνf(xT )

])

=
1

f(xT )
log

(
sT∑

m=1

(m+ 1)s +

∞∑
m=sT+1

exp
[
−m

2 ·KL(ν̃, ν) + s log(m+ 1)
]

+ exp

[
−xT · cν

(
KLinf(ν2, µ1)−

f(T )

xT

)2

+ Cνf(xT )

])

≤ 1

f(xT )
log

(
sT (sT + 1)s +O(exp(−(sT + 1)))

+ exp

[
−xT · cν

(
KLinf(ν2, µ1)−

f(T )

xT

)2

+ Cνf(xT )

])

=
1

f(xT )
log

(
O(fs+1(xT )) +O(exp(−f(xT )))

+ exp
(
−xT · cνKL2

inf(ν2, µ1) + 2cνKLinf(ν2, µ1)f(T )− cνf
1−γ(T ) + Cνf(xT )

))
(24)

Note that as T →∞ the second and third term inside the log in equation (24) goes to zero and finally we get

lim sup
T→∞

logG

f(xT )
→ logO(f(xT )

s+1)

f(xT )
→ 0

Finally taking δ ↓ 0, we get the desired result as follows

lim sup
T→∞

logPπ
ν(N2(T ) > xT )

log xT
≤ inf

ν̃1:E[ν̃1]≤µ2

− KL(ν̃1, ν1)

KLinf(ν̃1, µ2)

Multi-arm Setting: The extension to the multi-arm setting follows along lines analogous to the same extension in the
proof of Theorem IV.5 in Section A. Finally, invoking Lemma A.9, we obtain the following result for the deviation family
Dγ(T ) =

[
log1+γ(T ), (1− γ)T

]
with γ ∈ (0, 1), as stated below.

lim sup
T→∞

inf
x∈Dγ(T )

logPπ
ν(Ni(T ) > x)

log x
≤ −

i−1∑
j=1

inf
ν̃∈M:

m(ν̃)<µi

KL(ν̃, νj)

KLinf(ν̃, µi)

Now using the optimal regret tail lower bound from equation (3) we finally get the tight characterization as follows.

lim
T→∞

inf
x∈Dγ(T )

logPπ
ν(Ni(T ) > x)

log x
= −

i−1∑
j=1

inf
ν̃∈M:

m(ν̃)<µi

KL(ν̃, νj)

KLinf(ν̃, µi)

B. Relevant literature
Expected regret minimization in the stochastic multi-armed bandit problem has a long and rich history, dating back to the

early work of [26] in the context of clinical trials and [27]. A foundational result was achieved by [1], who established a
fundamental lower bound on the expected cumulative regret for parametric reward models. This bound shows that the expected
regret must grow at least logarithmically in the time horizon T , with a leading constant determined by the Kullback-Leibler
(KL) divergences between the optimal arm’s and each sub-optimal arm’s reward distributions. This result was later generalized
by [2]. Algorithms that achieve this lower bound are often called optimal. Among the many optimal algorithms proposed, one
of the prominent algorithms is the KL-upper confidence bound (KL-UCB) algorithm proposed by [9]. Even though the different
variants of UCB-type algorithm have long been studied [28]–[30], [9] provided finite time regret analysis of the KL-UCB
algorithm and first showed that the family of KL-UCB algorithm is asymptotically optimal not only for single parameter
exponential families (SPEFs), but also the empirical KL-UCB is optimal for generic finite and bounded supported reward



distributions and conjectured that this is also optimal for generic bounded rewards. Later, [12] formally proved this conjecture,
making the KL-UCB algorithm optimal for generic bounded support distributions. Since then, a predominant focus of the
subsequent literature has been the design of optimal algorithms, especially for well-structured distribution families [3]–[12]. We
refer the reader to [14] for a comprehensive survey.

Looking beyond expected regret has attracted sustained interest with early works [15], [16] examining deviation and
concentration properties of regret distribution. More recently, a growing body of work has undertaken a systematic study of the
distributional properties of regret, including worst-case behavior [17]. Consequently, [18] studies some typical behavior and
fluctuations of regret when T is large, developing strong laws of large numbers and central limit theorems for bandit algorithms,
for instance dependent settings. Further, some atypical behavior of regret is studied by [20], demonstrating that algorithms
which are asymptotically optimal in expected regret, namely, those that attain the Lai-Robbins lower bound, may nonetheless
exhibit heavy or poorly controlled regret tails. This is one of the fragility issues of optimal bandit algorithms, highlighting a
fundamental limitation of expectation-based optimality criteria.


